If it's not what You are looking for type in the equation solver your own equation and let us solve it.
82=16t^2
We move all terms to the left:
82-(16t^2)=0
a = -16; b = 0; c = +82;
Δ = b2-4ac
Δ = 02-4·(-16)·82
Δ = 5248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5248}=\sqrt{64*82}=\sqrt{64}*\sqrt{82}=8\sqrt{82}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{82}}{2*-16}=\frac{0-8\sqrt{82}}{-32} =-\frac{8\sqrt{82}}{-32} =-\frac{\sqrt{82}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{82}}{2*-16}=\frac{0+8\sqrt{82}}{-32} =\frac{8\sqrt{82}}{-32} =\frac{\sqrt{82}}{-4} $
| 5-2x4=x | | -10m+7=-1-8m | | 15=p+(-85) | | 6x−10=74 | | 0=1000-200p | | Y=-16x^2+32x+8 | | 3x-2=11* | | 2a(a+28)=180 | | 2x+5=15,x= | | -21^2+24x+6=0 | | 8x^2-3=4x^2-4x | | 42y+5=10 | | 15/n=1)30 | | 5b+8=-10+3b | | 1/9x-21=24 | | 6(-4n+1=102 | | s*6+41=125 | | s6+41=125 | | x+13=3x-63 | | 120/f=1/2 | | x^2-4=-12x | | 5x−18=10x | | 3^4x-3=6^2x+1 | | 2/x+1.1=-2.9 | | 7w-10=10+10+10w | | 4x+3=3x+x+7 | | 1/3x+5=1/2x+8 | | --5(2x-9)=2(x-8)-11 | | (25^2m)=125 | | .41y=3.71 | | 25^2m=125 | | 4+7b=6b-3 |